K-Means Clustering based Lexicon Analytical Model for Multi-Source News Classification
نویسندگان
چکیده
The supervised models have been found more efficient for the purpose of news classification. The major goal of the news classification research is to improve the accuracy while decreasing the elapsed time. It is always difficult for the people to read all of the news on their favourite’s portal which have listed over the given portal. In this research, an approach is KNN lexicon technique which is used to obtain the popular news list from thousands or hundreds of online news available through APIs. This approach uses extraction summarization for summarizing the keywords thereby selecting the original sentences and putting it together into a new shorter text explaining the overall overview of the news data. Then the lexicon analysis would be performed over the given text data and then final classification of the news is done using k-nearest neighbor. The results would be obtained in the form of the parameters of accuracy, elapsed time, etc.
منابع مشابه
Analytical Review of the News Data Classification Methods with Multivariate Classification Attributes
-The new classification has been emerged as the important sub-branch of the data mining. A lot of work has been already done on the news classification with variety of classifiers and feature descriptors. A number of news classification projects are working on the real-time systems in existence today. The news classification is the important part of the online news portals. The online news port...
متن کاملA hybrid DEA-based K-means and invasive weed optimization for facility location problem
In this paper, instead of the classical approach to the multi-criteria location selection problem, a new approach was presented based on selecting a portfolio of locations. First, the indices affecting the selection of maintenance stations were collected. The K-means model was used for clustering the maintenance stations. The optimal number of clusters was calculated through the Silhou...
متن کاملAn Optimization K-Modes Clustering Algorithm with Elephant Herding Optimization Algorithm for Crime Clustering
The detection and prevention of crime, in the past few decades, required several years of research and analysis. However, today, thanks to smart systems based on data mining techniques, it is possible to detect and prevent crime in a considerably less time. Classification and clustering-based smart techniques can classify and cluster the crime-related samples. The most important factor in the c...
متن کاملPrediction-Based Portfolio Optimization Model for Iran’s Oil Dependent Stocks Using Data Mining Methods
This study applied a prediction-based portfolio optimization model to explore the results of portfolio predicament in the Tehran Stock Exchange. To this aim, first, the data mining approach was used to predict the petroleum products and chemical industry using clustering stock market data. Then, some effective factors, such as crude oil price, exchange rate, global interest rate, gold price, an...
متن کاملModification of the Fast Global K-means Using a Fuzzy Relation with Application in Microarray Data Analysis
Recognizing genes with distinctive expression levels can help in prevention, diagnosis and treatment of the diseases at the genomic level. In this paper, fast Global k-means (fast GKM) is developed for clustering the gene expression datasets. Fast GKM is a significant improvement of the k-means clustering method. It is an incremental clustering method which starts with one cluster. Iteratively ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016